DEPARTMENT OF

ELECTRICAL &
COMPUTER ENGINEERING

Model Extraction Using Counterfactual Explanations

Pasan Dissanayake, Sanghamitra Dutta

Department of Electrical and Computer Engineering, University of Maryland, College Park

Counterfactual explanations

Unfavourable region (y=0)

@ Original instance

/ /

Decision boundary B

@

Counterfactual

Favourable region (y=1)

Figure 1. Counterfactual explanations

Definition: A counterfactual explanation for a given instance «x is a point
z. such that m(x) # m(x.) (i.e.lies on the opposite side of the decision
boundary), selected based on some criteria.

The closest counterfactual is the counterfactual which is closest to z, un-
der some distance metric.

Model extraction attacks

ML model Query Users

<—
—>

| abels and
— counterfactuals

Dataset

]

Figure 2. Machine Learning as a Service

= Automated decision making services offered via public APIs
= Usually have proprietary datasets and models

= High-stake applications require transparency and explanations —
Counterfactual explanations are a good solution

= Can exploit counterfactuals to improve model extraction attacks

{Create attack set D H Query “m” with D for labels+CFs HTrain ‘m” on D

Figure 3. A model extraction attack

Problem

= Constrained number of queries due to costs incurred in querying +
detection by traffic flow

= How to effectively exploit counterfactuals?
= How many queries needed?

Contribution

= Propose a method that exploits the fact that counterfactuals lie
closer to the decision boundary (one-sided CFs)

= Derive an expression for the number of queries required, for models
with convex decision boundaries

Clamping the decision boundary

Forcing m(xz.) tobe =~ k

Theorem 1: Assume both target and surrogate models are v—Lipschitz.
Then, for any z,

M) —m(z)|| < 29[|z — 2] (1)
where,
m(x) = target model
m(x) = surrogate model
r. = a point such that m(z.) = m(x.)
Observation:

= Let 2.'s be counterfactuals. Counterfactuals are closer to the
decision boundary = m(x.) ~ k (a constant > 0.5)

= Force m(z) to be k at z.'s

= Then, for z's on the decision boundary of m, m(z) ~ m(x) (with
sufficient z.'s)

Query complexity

Theorem 2: Let the feature space be the d—dimensional unit hypercube.
If m has a convex decision boundary and the counterfactual generating
method provides the closest counterfactual to the original instance, then,

d—1
[m(z) — m(x)|| < 27ve can be achieved by {Zd (V -1 _ 1) —‘ number

€

of queries.

Proof sketch: We bound the term ||z — z|| of theorem 1 using a
geometric construction as follows;

= An e—cover N, can be constructed over the (d — 1)-dimensional facets
) d—1
of the d—dimensional unit hypercube, with {Qd ( =1 _ 1) w pDOINtS

€

(see figure 4)

Figure 4. Av/d — 16-net on a 2-dimensional facet of a 3-dimensional cube

= Projecting each point onto the convex decision boundary will give an
e—cover over the decision boundary [2] = ||z — x¢|| < €

= Therefore, select D to be N,

Lemma: Closest counterfactuals for points in D will be the projections
of D onto the decision boundary

(valid for any decision boundary, not necessarily convex)

Implementation: Use a separate label for counterfactuals (y = 0.5), and
force m(xz.) = k in-order to achieve clamping
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Figure 5. Loss function with different values for label . ¢ is the predicted value. imp=0.4

Results

We use fidelity to measure the agreement between m(xz) and m(x).

1 —
Dl ﬂ[m(x):m(x)] (2)
L Lyef

Fidelity =

where m(x) and m(x) denote the binary labels predicted by the respective
models.

Naive model 1 - fidelity: uniform-0.96, test-0.98 Smart medel 1 - fidelity: uniform-0.98, test-0.98
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Figure /. Model extraction - Adult Income dataset
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